
Machine Learning

Foundation Entries

SAGE Research Methods Foundations

By: Jennie E. Brand, Bernard Koch & Jiahui Xu

Published:2020

Length: 10,000 Words

DOI: http://dx.doi.org/9781529749212

Methods: Machine Learning

Online ISBN: 9781529749212

Disciplines: Economics, Education, Social Policy and Public Policy, Sociology, Computer Science

Access Date: May 7, 2021

Publishing Company: SAGE Publications Ltd

City: London

© 2020 SAGE Publications Ltd All Rights Reserved.

This PDF has been generated from SAGE Research Methods.

http://dx.doi.org/9781529749212

Abstract

Machine learning is a statistical and computational approach to extracting important patterns and trends

in data. This entry is an overview of machine learning methods for social science research. It covers

supervised learning methods including generalized linear models, support vector machines, naive Bayes,

k-nearest neighbor, artificial neural networks and deep learning, decision trees, and ensemble methods. It

also notes several important considerations relevant to supervised learning algorithms including the use of

training and test data and cross-validation, loss optimization and evaluation metrics, bias-variance trade-

off, and overfitting and regularization strategies. The entry also covers unsupervised learning methods,

including k-means clustering, hierarchical clustering, network community detection, principal component

analysis, and t-distributed stochastic neighbor embedding. A section on text analysis incorporates supervised

and unsupervised learning of documents and neural networks. The entry provides an overview of new

developments at the intersection of machine learning methods and causal inference. Key limitations and

considerations for adopting these methods in empirical social science research conclude the entry.

Introduction

Machine learning is a computational and statistical approach to extracting patterns and trends from data

(Maini & Sabri, 2017). A machine learning algorithm is also defined as a computer program that learns

from experience with data with respect to some class of tasks and improves its performance with greater

experience (Mitchell, 1997). Machine learning has widespread applications to many scientific fields and has

gained a considerable amount of attention and use in recent years in the era of high-speed computing and

big data. As the tasks of statistical sciences have expanded in scope and complexity, machine learning has

quickly permeated many scientific fields from statistics and computer science to the social sciences.

There is some debate, particularly in statistics and the social sciences, about the degree of difference

between machine learning and classical statistics. Indeed, some scholars describe the field as statistical

learning. Machine learning methods have overlapped with methods used in applied statistics and social

sciences for many decades, although it is only recently that these fields have adopted machine learning

methods in earnest. At the same time, statisticians and social scientists have made considerable progress

bridging machine learning methods with areas central to statistics and social science, like causal inference

(Athey, 2018).

Machine learning algorithms can be categorized into supervised, unsupervised, and reinforcement learning.

Supervised learning algorithms learn from training data that contains both inputs (also called independent

variables, covariates, and features) and labeled outcomes (also called targets, dependent variables,

outcomes, and responses). Supervised learning tasks involving a categorical outcome variable are referred

to as classification tasks; learning tasks involving a continuous outcome are called regression tasks. Some

SAGE

2020 SAGE Publications, Ltd. All Rights Reserved.

SAGE Research Methods Foundations

Page 2 of 27 Machine Learning

common supervised learning approaches include generalized linear models (GLMS; e.g. logistic regression),

kernel methods (e.g., support vector machines [SVMs]), decision tree (DT)-based methods, and artificial

neural networks (i.e., deep learning).

In contrast to supervised learning, unsupervised learning algorithms build models with data only on the

features, without labels on the outcomes. These algorithms are usually used for the purpose of clustering

(e.g., discovering smaller groups within the data) or dimensionality reduction (e.g., reducing the number

of features or covariates to a smaller, more informative number of latent features). The algorithms build

models with data only on the input features, without labels on the outputs. Some common unsupervised

learning techniques include k-means clustering, hierarchical clustering, principle components analysis, and

t-distributed stochastic neighbor embedding (t-SNE). These techniques may be an intermediate data analysis

step in the construction of covariates or outcome variables for supervised learning.

While supervised learning uses data with outcomes (i.e., labels are provided), and unsupervised learning

does not (i.e., no labels are provided), an additional approach, reinforcing learning, lies in the middle.

Reinforcement learning, sometimes called semisupervised learning, is concerned with how agents should

take actions in environments to maximize reward. It is modeled as a Markov decision process. Reinforcement

learning has been used in robotics, industrial automation, gaming, digital advertising, and optimal policy

design. To correspond to use of these approaches in the social sciences, this entry devotes considerable time

to supervised learning, less time to unsupervised learning, and no additional time to reinforcement learning.

A Brief History of Machine Learning: From

Computer Science to Computational Social

Science

Machine learning is a subset of artificial intelligence (AI). Since Alan Turing first developed the concept

of the Turing Test in 1950 and considered the question of whether machines can “think,” researchers in

computer science have been drawn to the study of AI. Following the Dartmouth conferences of 1956, known

as the “birth of AI” (Crevier, 1993), Arthur Samuel coined the term machine learning to describe the way in

which machines learn from data. Machine learning methods were later noted to bear similarity to statistical

science. Machine learning grew in the 1990s as a means by which to apply statistics and probability theory to

effectively utilize increasing digitized information.

The term data science unifies the fields of machine learning, statistics, and data analysis. Data science is

a multidisciplinary field, drawing on mathematics, statistics, computer and information science, that uses

scientific methods and algorithms to generate knowledge from data. The term was used by Peter Naur in

1960 to refer to computer science. It was not until recently, however, that data science became a widely

used phrase and data scientist an increasingly advertised position. Many universities are either instituting or

SAGE

2020 SAGE Publications, Ltd. All Rights Reserved.

SAGE Research Methods Foundations

Page 3 of 27 Machine Learning

rebranding data science divisions, departments, centers, and labs. Another emerging phrase in the social

sciences is computational social science. Computational social science is data science applied to social

science applications.

The transformative impact of machine learning on social science research and policy is well underway.

Machine learning gives social science researchers tools to leverage the large, rich, and often unstructured

data that have become increasingly available. While these data benefit from being large relative to traditional

social science surveys, they come with their own unique set of challenges such as population

representativeness and quality of measures. With increasing technological and statistical progress, machine

learning methods are a powerful tool for social scientists to leverage these new and existing data. This

does not, however, negate the importance of human interpretative ability and social theory in social science

research (Pearl, 2018).

Supervised Learning

Supervised learning algorithms learn to identify labeled outcomes from training data that are then used to

predict the outcomes of new unseen test data. In training, the algorithm observes both the covariates and

the outcomes. For example, to teach a supervised algorithm how to distinguish between Democrats and

Republicans, a researcher might provide a training sample of individuals with a set of covariates and an

outcome labeled as Democrat and Republican. After training, the algorithm would predict the party affiliations

of individuals in a new data set. As noted earlier, tasks in which the outcome variable is categorical are

referred to as classification tasks, and tasks in which the outcome is continuous are called regression tasks.

Many algorithms can be adapted for both regression and classification tasks. For example, a researcher

might use logistic regression to predict the probability that individuals attend college (regression) or round this

probability at a decision boundary to predict whether or not individuals attend college (classification).

There are a wide range of supervised learning approaches and no single algorithm performs best in all

applications. Each has limitations and trade-offs; there is no free lunch (Wolpert & Macready, 1997). Some

common supervised learning approaches include (a) generalized linear models (e.g., ordinary least squares

[OLS] and logistic regression); (b) kernel methods (e.g., SVMs); (c) naive Bayes classifiers; (d) k nearest

neighbors (kNN); (e) DT methods (e.g., classification and regression trees [CART], random forests, and

gradient boosting machines); and (f) artificial neural networks (i.e., deep learning). The rest of this section

proceeds as follows. First, it describes the general workflow of supervised learning, with a focus first on

regression tasks. Second, it explains how supervised regression algorithms are trained and introduces the

bias-variance trade-off, as well as the concept of regularization. Finally, it discusses classification tasks

and the precision-recall trade-off. It then briefly introduces several different classes of supervised learning

algorithms.

SAGE

2020 SAGE Publications, Ltd. All Rights Reserved.

SAGE Research Methods Foundations

Page 4 of 27 Machine Learning

Training, Cross-Validation, and Testing Data

The first step in a machine learning analysis is to divide the data into a labeled training set for optimizing

the model parameters and a testing set of unlabeled data for which we wish to predict outcomes. Testing

data should not be touched until the final parameters of the model have been chosen; the testing data will be

used only once. Partitioning the data in this way is important for learning general patterns and not overfitting

training data. Overfitting occurs when a model is fit too closely to particular data points, yielding a complex

model that accurately explains idiosyncratic patterns in those data and does not generalize reliably to new

data.

Researchers reserve a portion of the training data—the cross-validation set—to evaluate how well the

algorithm will perform out-of-sample prediction before applying the model to the testing data. K-fold cross-

validation is a resampling procedure that is used to evaluate how a model is expected to perform on unseen

(i.e., test) data. In k-fold cross-validation, researchers divide the data into k groups and build a model on k −

1 groups, while the remaining group is used for validating. This subsampling process is repeated until all the

k groups have been used as the test (or validation) set. Figure 1 is an example of k-fold cross-validation. The

sample is partitioned into a training set and a testing set, and the training set is subsequently partitioned into

a cross-validation set to tune hyperparameters. Higher values of k are common (e.g., k = 10).

Figure 1. Supervised learning workflow with k-fold cross-validation.

K-folds cross-validation strategy, where k = 5. Cross-validation is a resampling procedure used to evaluate

machine learning models on a sample. The procedure has a single parameter (k) that refers to the number of

groups that a given data sample is split into.

Training data can be used to improve model performance by tuning hyperparameters. Hyperparameters

are model parameters whose values are set before the learning process begins, and that are adjusted

by the researcher. Values of other parameters are derived in the training process. Simple algorithms, like

SAGE

2020 SAGE Publications, Ltd. All Rights Reserved.

SAGE Research Methods Foundations

Page 5 of 27 Machine Learning

OLS regression, do not require hyperparameters. Hyperparameter tuning is the process of choosing a set

of optimal hyperparameters for a learning algorithm. To sample different hyperparameter values during

cross-validation, researchers often use grid search (i.e., explore all possibilities) or random search (i.e.,

explore random possibilities); more sophisticated strategies such Bayesian optimization are also possible.

Grid search works by searching exhaustively through a specified set of hyperparameters. It is guaranteed

to identify the optimal parameters, yet is time-consuming. Random search searches randomly, rather than

exhaustively, and in so doing is less time-consuming yet also less likely to find the optimal combinations of

hyperparameters.

Loss Optimization and Evaluation Metrics

During training, supervised learning algorithms optimize in-sample performance with respect to a loss

(sometimes called objective or cost) function. After training, researchers use evaluation metrics to assess out-

of-sample predictive performance of the model. Although most supervised learning algorithms can be used for

both regression (continuous outcome) and classification (categorical outcome), regression and classification

tasks typically have different loss optimization functions and evaluation metrics. Moreover, although the same

metrics are often used for in-sample loss and out-of-sample evaluation in regression, researchers typically

use different metrics for training and evaluation in classification tasks. This section focuses on functions for

loss and evaluation for regression and then for classification.

Regression Loss and Evaluation Metrics

The most common loss function for regression is the mean squared error (MSE), or quadratic loss function.

The MSE measures the mean of the square of the errors between the observed value and the predicted

value:

where yi is the observed outcome, and
^
y i is the predicted outcome. Sometimes the square root of this

function, the root MSE (RMSE), is used for ease of interpretation. The MSE is always non-negative, and

values closer to zero indicate better model accuracy. In regression training, the algorithm is trained to

minimize MSE in the training data; researchers are most interested, however, in how well the model performs

on the test data. The MSE is also the most common evaluation metric in the test data. There is no guarantee

that the model with the smallest training set MSE will have the smallest test set MSE. Mean absolute error

(MAE) is an alternative regression loss and evaluation function that is more robust to outliers and is easier to

interpret than MSE. MAE weights all errors equally, while the quadratic form of MSE penalizes large errors

more heavily. MAE is the sum of absolute differences between the predicted and actual value rather than the

sum of squared differences:

SAGE

2020 SAGE Publications, Ltd. All Rights Reserved.

SAGE Research Methods Foundations

Page 6 of 27 Machine Learning

Although the MSE is by far the most common loss and evaluation metric, there may be specific tasks where

a more specialized function like Huber loss, log-cosh, or quantile loss is appropriate. Beyond these functions,

many of the model selection metrics that social scientists are already familiar with, such as R2, are also useful

for evaluating out-of-sample performance. R2, or the coefficient of determination, is a statistical measure of

how close the data are to the model. It is measured as the ratio of explained to total variation.

Classification Loss and Evaluation Metrics

Classification accuracy is a simple metric to evaluate classification algorithms by the percentage of correct

classifications. It does not, however, completely capture the performance of a classifier. Researchers instead

evaluate the performance of a classifier using precision and recall. Precision is defined as:

and recall is defined as:

If a classifier has high precision, it will rarely misclassify a false positive as true positive. If a classifier has high

recall, it will rarely miss any positives that should be true positives. Generally, there is a trade-off between

precision and recall, and there may be times where a researcher favors a more conservative, high-precision,

or a more sensitive, high-recall classifier.

In binary classification, researchers can demonstrate the precision-recall trade-off using a receiver-operating

curve (ROC) plot. Ideally, researchers want a classifier that minimizes the trade-off. The area under the ROC

curve (AUC) is often used as a reductive statistic for comparing classifiers. ROC curves do not extend easily

to multiclassification problems. In this case, researchers may turn to the confusion matrix, which displays

the number of each true label categorized into each class. Figure 2 displays ROC and the confusion matrix.

Another approach to summarizing the precision-recall trade-off is the F1 score:

Unlike ROC/AUC, F1 can be easily extended to multiclassification problems.

Figure 2. Receiver operating characteristic (ROC) curve and confusion matrix.

SAGE

2020 SAGE Publications, Ltd. All Rights Reserved.

SAGE Research Methods Foundations

Page 7 of 27 Machine Learning

Left: The ROC curve (and the area under this curve) capture the precision-recall trade-off for binary

classifiers. Right: Example confusion matrix with 100 training examples in 3 classes. Correct classifications

are diagonal elements and misclassifications are off-diagonal elements.

A common classification loss function is the log loss or closely related cross-entropy loss. Rather than

optimizing the accuracy of classification, log loss optimizes the model’s probabilistic estimates of which class

the data belong to. Log loss is often preferable to classification accuracy because it considers the uncertainty

of predictions. Suppose there are two possible class labels, y is a binary variable (0/1) indicating whether

class label c is the correct classification for a unit i, and p is the model’s predicted probability that unit i is class

c, the log loss function is:

A perfectly predictive model would have a log loss of 0, and the log loss increases as the predicted probability

deviates from the actual label. For example, if the true label had a value of 1.0, the log loss function

slowly decreases as the predicted probability nears 1.0. Log loss can be extended to multiclass problems

by summing the first term in the aforementioned equation for each class. Yet not all classifiers extend

generically to multiclassification. Focal loss, KL divergence or relative entropy, exponential loss, and hinge

loss (particularly for SVMs) are other possible loss functions for classification.

Bias-Variance Trade-Off

In all supervised machine learning tasks, there is a fundamental trade-off between a model’s ability to

achieve the optimal in-sample fit and its ability to generalize to new, out-of-sample data. In statistical learning

theory, this is known as the bias-variance trade-off. Imagine you have a single datum with covariates xi and

outcome yi and many different data sets, and you train a supervised learning model f(x) on each of these

SAGE

2020 SAGE Publications, Ltd. All Rights Reserved.

SAGE Research Methods Foundations

Page 8 of 27 Machine Learning

data sets. Error due to bias is the difference between the average (expected) predicted outcome y across

all models/data sets and the actual value of y. That is, a learning algorithm is biased if it systematically

incorrectly predicts y. The bias is thus the difference between the true values and the algorithm’s prediction

(in expectation) when trained on multiple data sets. Error due to variance describes the variability of the

predictions of y across all models/data sets.

Recall the equation for the MSE:

The equation for the MSE can be decomposed into errors in prediction as errors arising from bias and those

from variance as follows:

In other words, the MSE can be written as bias2 + variance + irreducible error (Hastie et al., 2009). The

irreducible error is the noise in the true relationship that cannot be reduced by any model. The prediction error

of a learned classifier is related to the sum of the bias and the variance of the learning algorithm, generating

a bias-variance trade-off (Geman, Bienenstock, & Doursat, 1992).

Ideally, a model should be neither overly complex nor overly simple. A more flexible, complex model

decreases bias but increases variance. A less complex model essentially ignores relevant information, and

error due to bias increases while error due to variance decreases. Figure 3 displays this relationship. A

learning algorithm must be complex enough to fit the training data and minimize bias, while simultaneously

not so complex that variance is high when fit to generalization data sets. Despite a leaning toward minimizing

bias in the training data, researchers should prefer an estimator with some bias to reduce variance in

generalization data.

Figure 3. Bias-variance trade-off.

SAGE

2020 SAGE Publications, Ltd. All Rights Reserved.

SAGE Research Methods Foundations

Page 9 of 27 Machine Learning

A learning algorithm must be complex enough to fit the training data and minimize bias, while simultaneously

not so complex that variance is high when fit to generalization data sets.

The size of training data and the number of features influence model building capacity. If the true relationship

between features and the outcome is simple, then a small amount of training data and a simple model will be

sufficient to learn that function with low bias and variance. If the true function is complex, more data and a

more flexible algorithm are needed to approximate the true function, and the bias-variance trade-off is more

salient. Likewise, if the feature space has high dimensionality, learning may be difficult. This can be true even

if the true function only depends on a small subset of those features.

Overfitting and Regularization

Overfitting occurs when a supervised learning model learns too exactly the particularities of the training

data and may therefore fail to predict future observations reliably in the test data or more generally to other

samples. An overfit model contains more flexibility (e.g., more parameters) than can be justified given the

data and extracts noise from the data as if that noise or variation represented true model structure. An overfit

model corresponds to high variance and low bias. The alternative is that the model is underfit, that is, a

simple model corresponding to low variance and high bias. Variance is error resulting from sensitivity to small

fluctuations in the training data. When there is high variance, the algorithm models the noise in the training

data. Bias is error resulting from faulty assumptions in the model. High bias results in overlooking important

SAGE

2020 SAGE Publications, Ltd. All Rights Reserved.

SAGE Research Methods Foundations

Page 10 of 27 Machine Learning

relationships between the independent and dependent variables. Figure 4 depicts an example of overfitting

and underfitting a regression model.

Figure 4. Example of overfitting and underfitting a training set.

Black dots represent training points. Dotted line represents a complex, overfit, low-bias but high-variance

model that will not generalize well to new data. Dashed line represents an underfit linear model, high bias in

the training set. Solid line represents a model that falls somewhere in between the overfit and underfit models.

Regularization encompasses a range of strategies to prevent overfitting, improve generalization, and reduce

model complexity. There are many different approaches to regularization, including reducing the number

of covariates using dimensionality reduction, feature selection algorithms, or domain knowledge. Shrinkage

methods reduce the magnitude of parameters by applying a constraint and penalty on the complexity of the

model. The two most common shrinkage penalties are L1 or least absolute shrinkage and selection operator

(LASSO) regression (Tibshirani, 1996) and L2, Tikhonov, or ridge regularization. Although LASSO and ridge

penalties can be applied to any continuous loss function, this section mainly focuses on their application to

GLMs (e.g., OLS, logistic regression). For researchers using GLMs, the key difference between LASSO and

ridge regression is that LASSO selects a subset of covariates for the final model, and effectively shrinks

parameters that do not contribute to the predictivity of the model to zero, whereas ridge regression shrinks

large parameters but does not allow the coefficients to be zero. LASSO therefore results in a simpler, more

interpretable model.

Consider a sample of N units, one outcome yi, k covariates, and xi = (x1, x2, …, xp)T is the covariate vector for

the ith case. The objective of LASSO is to solve:

SAGE

2020 SAGE Publications, Ltd. All Rights Reserved.

SAGE Research Methods Foundations

Page 11 of 27 Machine Learning

subject to the constraint

where t is a prespecified free parameter that determines the degree of regularization. The function with the

LASSO or L1 regularization can then be written as:

where the last term is the penalty, or regularization, term. The λ term is a hyperparameter, which can be

tuned in order to improve performance. The ridge regression or L2 regularization is associated with a different

penalty term:

where the last term is the penalty term added. L1 and L2 regularization both prevent overfitting by shrinking

the parameters as the penalty term λ increases. If λ is zero, both forms revert to OLS regression. We are

faced with a bias-variance trade-off in choosing the value of λ. As λ increases, the estimators increase bias

and minimize variance.

Supervised Learning Algorithms

Generalized Linear Models

Generalized linear models, particularly linear and logistic regression, are among the simplest and most

widely used supervised learning algorithms. Despite its name, logistic regression is mainly used for binary

classification tasks by applying a threshold to the probability generated by the model (probabilities greater

than the threshold are assigned to one class, and below the threshold to the other). In the logistic regression

algorithm, the objective is to classify two classes, that is, y ∈{0, 1} (e.g., classifying tumors as malignant or

benign). Log odds for the value labeled 1 is a linear combination of one or more discrete or covariates. The

log odds can also be understood as the log of the probability the event will occur (or the output is 1) divided

by the probability that it does not occur (or the output is 0):

SAGE

2020 SAGE Publications, Ltd. All Rights Reserved.

SAGE Research Methods Foundations

Page 12 of 27 Machine Learning

This is a linear model, as the log odds are a linear combination of the inputs. The covariates enter the logistic

regression by passing through a sigmoid (S-shaped) function. The logistic function is given by the inverse

logit.

Consider the tumor example in more detail. Suppose researchers have the features of tumors (e.g. tumor

size, position). The purpose is to use these features to predict malignant tumors, which can be interpreted

as probabilities from the logistic function. If the probability for one tumor is greater than 0.5 (where x = x*

when the probability is 0.5), researchers can predict that the tumor is malignant. Otherwise, it is assumed to

be benign. Researchers might call 0.5 the decision rule. The vertical line x = x* is a decision boundary which

separates the tumors (y = 1) from the nontumors (y = 0). Clearly, the data may not, however, be separable at

this decision boundary. This example could be extended to incorporate high-dimensional features as well as

multiclass classification, such as filtering emails to various categories.

Support Vector Machines

Like logistic regression, SVMs learn a binary decision boundary between two classes (Cortes & Vapnik,

1995). However, they use a geometric approach rather than probabilistic approach. If the feature space has

k dimensions, SVMs will learn a k − 1-dimensional hyperplane (a two-dimensional hyperplane is a line, a

three-dimensional hyperplane is a plane, etc.) to divide the two classes, such that the hyperplane is maximally

distant from the nearest training points in each class (i.e., maximizes the “margin” between the hyperplane

and each class). Finding the hyperplane that meets the criteria is only computationally feasible by using

the kernel trick, which allows the algorithm to compute dot products (i.e., distances) between points in high-

dimensional spaces simply by transforming them using a kernel function (James et al., 2017). Even with k −

1 dimensions of flexibility, this hard margin approach can lead to overfitting of outliers so soft margin SVMs

allow a few training units to be misclassified, thus decreasing variance.

Naive Bayes Classifiers

Naive Bayes classifiers, also known as probabilistic classifiers, constitute a simple method for classifying

data. Naive Bayes is a conditional probability model that applies Bayes theorem:

SAGE

2020 SAGE Publications, Ltd. All Rights Reserved.

SAGE Research Methods Foundations

Page 13 of 27 Machine Learning

where P(Ck|x) is the probability of class C given a vector of features x. It is naive in that all the features are

assumed to be independent. The naive Bayes classifier works by first calculating the probabilities for each

class given the input features. For example, suppose we want to filter e-mails. An e-mail could be classified

as spam or nonspam based on the text of the email (i.e., the features). A user manually labels an email as

spam, and this is observed by the machine learning algorithm. When a new email comes in, the algorithm will

compute the probability the email is spam given the text, and classify the e-mail as spam if the probability of

it being spam exceeds the probability of it being nonspam.

k-Nearest Neighbor

The kNN is a simple, nonparametric algorithm for both classification and regression. When used for

classification, the output is class membership; when used for regression, the output is the value of the

response. There is essentially no training phase in kNN. In testing, a new datum is assigned to the class of the

plurality (in classification) or mean outcome (in regression) of the k nearest training neighbors of the datum

with respect to some distance metric (usually Euclidean, but others such as Hamming are also common). In

classification, if k = 3 then the new datum is assigned to the majority class of the three nearest neighbors.

Higher values of k reduce overfitting, but when k is too high the boundaries between classes blur. To address

this issue, researchers can assign weights to the neighbors, such that nearer neighbors are assigned higher

weights. A common weighting technique is to assign each neighbor a weight of 1/d, where d is the distance

to the neighbor.

Decision Trees

DTs are a widely used nonparametric learner for both classification and regression that recursively split

the data into increasingly smaller subsets where datapoints are more similar (i.e., have a smaller variance

in regression or are more homogenous in classification). The resulting hierarchical data structure can be

presented by a tree. These “white-box” models are becoming popular in social science because they are

simple to understand and interpret. One of the most popular DT algorithms is CART (Breiman et al., 1984).

During training, DTs are built from the “root” by recursively (1) selecting a feature, (2) selecting a threshold

or cutoff point on that feature that makes the remaining data on both sides of the threshold more similar,

and (3) partitioning the remaining data into two smaller subsets on that feature and threshold. In theory,

these steps are repeated until the terminal subsets (i.e., the “leaves”) contain only a single data point. In

practice, researchers use regularization techniques so that each leaf contains a group of similar training

points to reduce variance. In regression, each leaf represents the average value of y for data in that leaf.

In classification, each leaf represents the plurality class for the data in that leaf. During testing, researchers

can apply the sequence of decisions used to construct the tree to place each testing datum into the most

appropriate leaf.

DTs determine which feature and threshold to split the data on by minimizing an in-sample loss function.

Because it is impossible to explore all possible sequences of decisions, DTs minimize this loss function only

SAGE

2020 SAGE Publications, Ltd. All Rights Reserved.

SAGE Research Methods Foundations

Page 14 of 27 Machine Learning

on the current subset of data at each split, rather than on the entire data set. This “greedy” approach is

efficient but may result in a locally optimal rather than globally optimal solution. In classification, the loss

function tries to maximize homogeneity within leaves at every split. In so doing, researchers maximize entropy

or impurity across leaves. For regression problems, the loss function minimizes variance with the leaf:

where y is the mean of y. For classification problems, there are several possible loss functions:

misclassification rate, entropy (deviance), and the Gini impurity. For example, the Gini impurity cost function

is an indicator of how pure the two groups will be with respect to class heterogeneity after the split. Formally,

the function can be written as:

where pc is the portion of units being classified as class c and 1 − pc is the portion being misclassified.

Because the objective of DTs is to make leaves homogenous, these algorithms are susceptible to overfitting

and require regularization. Three common ways to regularize trees are (1) limit the maximum leaf size, (2)

limit the maximum tree depth during training, or (3) prune the tree depth after training.

Decision Trees: Ensemble Methods

A disadvantage of single DTs is that their “greedy” optimization produces high-variance solutions. That is,

minor modifications to the input data can produce large effects on the tree structure. To combat overfitting,

ensemble methods construct many decision trees which then vote on the prediction for each datum. Bootstrap

aggregating or “bagging,” is an ensemble method that constructs multiple decision trees by repeatedly

resampling training data with replacement and generating a consensus prediction. Even with bagging, greedy

trees will tend to use the same features for similar decision sequences and thus be correlated. Random

forests combine bagging with a feature bagging scheme that forces greedy trees to explore different decision

sequences with other predictive features: at each split, a given tree in the forest can only choose from a

random subset of features (Amit & German, 1997; Breiman, 2001; Ho, 1995; Zhu, Zeng, & Kosorock, 2015).

Because random forests are built from more varied data (bagging) and are forced to explore a broader

solution space (feature bagging), the predictions produced by consensus of the forest tend to have lower

variance than a single DT without increasing bias. That is, while predictions for a single tree are sensitive to

noise in the training set, the average of many trees is not (if the trees are uncorrelated). However, ensemble

methods are black-box algorithms—this decrease in variance thus comes at a cost of interpretability.

Another popular ensemble method, boosting, takes a different approach. Boosting algorithms train very

SAGE

2020 SAGE Publications, Ltd. All Rights Reserved.

SAGE Research Methods Foundations

Page 15 of 27 Machine Learning

shallow trees which are relatively high bias but low variance (weak learners) and successively add more weak

learners that focus on areas of the data that the current ensemble is doing a poor job of predicting. The

gradient boosting machine (GBM) algorithm trains many models in an additive, sequential way to improve

predictions (Breiman, 1997; Friedman, 1999). Bayesian additive regression trees (BART) is a Bayesian “sum-

of-trees” model motivated by ensemble methods and boosting algorithms (Chipman et al., 2010). By using

priors, this Bayesian approach eliminates many user decisions about regularization, tree depth, and other

hyperparameter tuning options.

Artificial Neural Networks and Deep Learning

Artificial neural networks are sophisticated supervised learning algorithms inspired by the human brain. Much

like neurons in the brain firing due to impulses from other connected neurons, each node in a neural network

takes a weighted combination of the outputs of incoming neurons as its input. An activation function then

transforms this weighted combination and outputs a single scalar to any neurons to which it is connected.

A perceptron is the simplest neural network, where input nodes for each feature feed to a single output

node. When the activation function for this neuron is a sigmoid (i.e., logistic) function, this model corresponds

exactly to logistic regression. However, the power of neural networks comes from the additional layers

of neurons between the input and output layer to create multilayer perceptron (MLP). With a single fully

connected “hidden” layer of neurons, a neural network can theoretically approximate any continuous function.

Neural networks are trained by “backpropagating” the final loss to the weights in previous layers using

calculus’s chain rule. Figure 5 is an example of an MLP.

Figure 5. Feedforward neural network (multilayer perceptron).

In the hidden layers of a multilayer neural network, each neuron in layer n takes as input the outputs of layer n

− 1 and multiplies these inputs by the weight parameters Wn before summing them. A bias parameter is also

included in this linear combination (Gn =WnXn + Bn). The linear combination GNI feeding into each neuron

SAGE

2020 SAGE Publications, Ltd. All Rights Reserved.

SAGE Research Methods Foundations

Page 16 of 27 Machine Learning

is then passed through a nonlinear function (e.g., sigmoid or rectified linear unit) to determine it’s output.

Despite this flexibility for modeling nonlinear functions, neural networks have lagged behind other supervised

learning approaches in performance for decades because of the computational expense, difficulty, and large

amount of data needed to train these models. More recently, neural networks with novel architectures began

to outperform other supervised learning approaches in what is now collectively called deep learning (LeCun,

Bengio, & Hinton, 2015). Two of the most enduring and influential ideas in deep learning are the concepts of

convolution and recurrence. Convolutional neural networks are regularized feed forward networks that force

neurons to hierarchically learn the complexity of the feature space using a series of convolution and pooling

layers. Unlike feed-forward networks, which are directed and acyclic, recurrent networks have neurons that

do not just feed forward but also connect back to earlier layers in the network. Because they give the network

a type of memory, recurrent architectures are popular in natural language processing.

MLPs are not widely used by social science researchers as classifiers or regressors because (a) unlike GLMs

and DTs, they are black-box algorithms with uninterpretable parameters, and (b) they require large amounts

of data to train correctly. However, deep learning should become increasingly common in social science as

researchers build familiarity with pretrained deep learning models, gain access to larger and more complex

datasets, and deep learning integrates with causal inference.

Unsupervised Learning

Unsupervised learning algorithms identify patterns and associations in the data without help (i.e., labeled

examples) to train on. In most cases, these algorithms are used for clustering data into groups or reducing the

dimensionality of data. Identifying different types of individuals on an online dating site or reducing a dataset of

conversational data with 150 possible human gestures down to 10 latent ones are examples of unsupervised

learning tasks. Some common examples of unsupervised learning algorithms include (a) k-means clustering;

(b) hierarchical clustering; (c) principal component analysis; (d) t-SNE; and (e) unsupervised learning of

documents for text analysis. This section discusses each of these algorithms in more detail.

Unsupervised Learning Algorithms

k-Means Clustering

The k-means clustering algorithm is among the simplest clustering algorithms. The intuition behind k-means is

that the data can be clustered by assigning each of n observations into k (≤ n) clusters to the nearest centroid

(i.e., mean) in the x-dimensional feature space. The k-means clustering is then optimized by minimizing the

variance within clusters and maximizing the variance between clusters. Researchers initialize a predefined

number of cluster centroids k in the feature space, then repeat the following two steps until the within-cluster

variance is minimized: (1) reassign each unit to the nearest centroid or mean using some distance metric (e.g.

Euclidean distance) and (2) calculate the new means of the units in each cluster as new centroids. As a larger

SAGE

2020 SAGE Publications, Ltd. All Rights Reserved.

SAGE Research Methods Foundations

Page 17 of 27 Machine Learning

k creates smaller groups with more granularity, while a smaller k creates larger groups with less granularity,

it may be useful to run the algorithm multiple times varying this parameter. Silhouette scores are one popular

method for evaluating the coherence and separation of clusters. Figure 6 is an example of k-means clustering.

Figure 6. K-means clustering algorithm.

Example k = 3. The balls with different shadings represent different classes. The cross signs are centroids in

the clusters.

Hierarchical Clustering

Hierarchical clustering generates, as the name indicates, a hierarchy of clusters. Agglomerative hierarchical

clustering algorithms (e.g., the popular neighbor-joining unweighted pair-group method with unweighted mean

UPGMA algorithm) take a bottom-up approach where each unit begins as an individual and is repeatedly

paired with other individuals or clusters as researchers move up the hierarchy to a single group. In top-down

divisive hierarchical clustering, all observations start in one cluster and the splits are made recursively as

researchers move down the hierarchy. Like k-means, researchers must choose a distance metric to decide

which clusters should be paired or divided. The Euclidean distance is a common metric for both k-means

and hierarchical clustering, but other options include the Manhattan, Mahalanobis, or Hamming distances.

Because hierarchical clustering is sensitive to outliers and overfitting, it is common to bootstrap the data to

evaluate the stability of clusters.

Network Community Detection

Complex networks are graphical models where nodes are connected to other nodes via edges. These edges

represent some relationship between the nodes. If the nodes are people in a social network, the edges

might represent relationships, but other types of relationships can also be represented in a network: scientific

papers that are connected via citations or documents that are connected by the co-occurrence of words.

Communities in networks are clusters of nodes that are more densely connected to each other than they

are to other nodes, and the discovery of these communities can be thought of as a form of unsupervised

clustering. Even for data that cannot conventionally be thought of as a network, community detection can be

a useful unsupervised learning approach when there are not many features but rich relational data (Newman,

2004). Modularity-detection, information theory, and label propagation are viable approaches to community

SAGE

2020 SAGE Publications, Ltd. All Rights Reserved.

SAGE Research Methods Foundations

Page 18 of 27 Machine Learning

detection. Some of these algorithms can produce hierarchical communities as well.

Dimensionality Reduction: Principal Components Analysis

Including noisy or highly correlated features in supervised learning can potentially lead to overfitting. The

simplest solution to this problem is to use domain knowledge to remove irrelevant features. Dimensionality

reduction is another way to reduce the number of features and focus on the principal features. It can be

achieved by feature selection and feature extraction. Researchers might perform feature selection by using

LASSO to identify relevant features and eliminate irrelevant features. Feature extraction creates new latent

features, where the new features are combinations of the old features. Researchers can use either a linear or

nonlinear feature extraction procedure. Principal components analysis (PCA) is an example of linear feature

extraction; t-SNE is an example of nonlinear feature extraction.

PCA extracts new features from data by remapping the data to a smaller space. PCA’s data reduction

technique involves creating one or more index variables, the components, from a larger set of observed

variables. PCA is used to determine the optimal choice of observed variables for each component and the

optimal weights. Typically, this linear transformation is conducted through an eigenvector decomposition of

the covariance matrix of the features. In this space, the axes are uncorrelated and each axis explains a

percentage of the variance in the data set. The first principal component explains the greatest proportion of

variance, the second explains the second greatest proportion of variance, and so on. Typically, researchers

will only use the first few principal components which account for a majority of the variation and discard the

rest as noise. PCA is often used in exploratory data analysis by plotting the data set onto the first two or three

principal components to find clusters in the data. Alternatively, the user might use these principal components

as latent features in a downstream supervised learning task.

Dimensionality Reduction: t-SNE

Another approach to dimensionality reduction, t-SNE, enables reduction by nonlinear feature extraction. It is

a visualization algorithm of clusters for dimensionality reduction, that is, reducing high-dimensional data in

a low-dimensional space such that similar objects are modeled by nearby points. Researchers use t-SNE

to map high-dimensional data to a lower dimensional space and identify patterns in the data by locating

observed clusters. The t-SNE algorithm proceeds in two steps. First, it constructs a probability distribution

such that similar objects in the high-dimensional space have a high probability of being selected while

dissimilar units have a low probability of being selected. Second, it constructs an analogous probability

distribution in the low-dimensional space. The similarity metric is commonly the Euclidean distance. This

approach, in contrast to PCA, is very computationally intensive. The input features are also no longer

identifiable. It is most often used for data exploration and visualization.

SAGE

2020 SAGE Publications, Ltd. All Rights Reserved.

SAGE Research Methods Foundations

Page 19 of 27 Machine Learning

Machine Learning Methods and Text

Analysis

As the amount of social science data available online grows, text analysis has become an increasingly

important part of social science research. The most common uses of machine learning for text analysis are

supervised classification of documents by label, topic, or sentiment, unsupervised clustering of documents to

discover topics, name disambiguation, and entity or meaning recognition.

Supervised Labeling of Documents

A common task in text analysis is the automated labeling of documents for topic, sentiment, or class. For

example, rather than manually coding 1,000 book reviews for political orientation, researchers might want

to label just 250 of them and train an algorithm to label the remaining reviews. By using word frequencies

as features, many of the supervised learning algorithms described earlier can be adapted for this task.

These algorithms, called discriminative models, learn hard decision boundaries between classes given the

observed features. In contrast, generative models make structural assumptions about the relationships

between classes and features by modeling each class as a probability distribution of features. These models

are called generative because once trained, the label distribution can be used to generate features consistent

with the class probabilistically (i.e., a document of words that co-occur within that class with high probability).

Generative models have been particularly successful for classification in small text corpuses because the

strong probabilistic assumptions make them robust to outliers in the training data.

As described earlier, the naive Bayes algorithm is one of the simplest supervised generative text classification

models. Using Bayes Rule, naive Bayes models the probability [P(Y|X)] of a document with word distribution

X belonging to a class Y as a product of the prior frequency of documents of that class [P(Y)], and the

likelihood of the words observed in the document being generated from that class [P(X|Y)]. As a concrete

example, suppose that the document is a Yelp review to be classified as positive or negative. The prior

probability of the positive class P(positive) would be the frequency of positive reviews in our training set. If the

document consisted of only two words “very delicious,” the likelihood would be calculated as the probability

of those words occurring together in positive sentiment documents. The naive assumption in naive Bayes is

that researchers can approximate this probability by simply multiplying the probabilities P(very|positive) and

P(delicious|positive) together.

There are several ways to calculate the probability of words being generated by documents (i.e., the

likelihood), although all of them fundamentally assume that a document is an unordered “bag” of words.

The simplest way is to compute the probability of a word being generated from class Y is to compare the

number of times that X occurs or does not occur in training documents of class Y (Bernoulli naive Bayes). An

alternative approach instead considers the counts of word in documents of class Y (categorical/multinomial

SAGE

2020 SAGE Publications, Ltd. All Rights Reserved.

SAGE Research Methods Foundations

Page 20 of 27 Machine Learning

naive Bayes). Once the prior probabilities and Bernoulli or categorical word distributions for each class have

been calculated from the training data, the model can be used to apply labels to a testing dataset.

Unsupervised Topic Modeling

In unsupervised topic modeling, each document is not labeled with a single class but as a proportional mixture

of latent unspecified “topics.” For example, a Yelp review might be labeled as 50% Topic 1, 40% Topic 2, and

10% Topic 3. After applying the topic model, the researcher can then go through the corpus and interpret

what the topics mean semantically. In this example, Topic 1 might largely correspond with descriptions of

the food, Topic 2 might capture sentiment words, and Topic 3 may be about the service. Topic models are

useful tools because they allow the researcher to both discover topics or themes in a corpus without a priori

assumptions and to group documents that are topically or thematically similar together. Moreover, often the

only hyperparameter that needs to be chosen is the number of topics.

Topic models differ from supervised learning of documents in several key ways. First, although a document is

still represented as a bag of words, not every word in the document must come from the same topic. Second,

the topics themselves are categorically distributed. Consider the popular probabilistic latent semantic analysis

algorithm (pLSA). For each position in a document, the algorithm (1) picks a topic from the categorical

distribution of topics and (2) generates a word from the categorical distribution of words given that topic. In

the Bayesian version of pLSA, latent Dirichlet allocation (LDA), researchers have additional priors on the two

categorical distributions, improving the performance on small corpuses.

Word Embedding Using Neural Networks

Topic models discover similarities between documents through the global co-occurrence of words between

documents. However, the past 5 years have seen exciting advances in a different approach to finding

structure in text data: learning the relationship between words based on their local co-occurrence with other

words (i.e., the local context of words no more than 3–10 words away) using a neural network. Word

embedding methods train a neural network to correctly predict the 3–5 words surrounding each word over

thousands or millions of examples in large corpora. Although this is technically a supervised learning problem,

the actual predictions are not actually of interest. What makes these models useful is the function encoded in

the hidden layer of this trained network which transforms words into the lower dimensional space. Somewhat

surprisingly, vocabulary words represented in this lower dimensional embedding space (i.e., transformed by

the hidden layer of the neural network) are closer to other vocabulary words with similar semantic meaning

and/or syntactic usage. The ability of word embeddings to solve analogy problems through simple vector

arithmetic demonstrates this property. For example, subtracting the word vector for “man” from “king” and

adding the word vector for “women” produces a new word vector that is very close to the word vector for

“queen.” These analogy tests also highlight that the word embedding space contains latent dimensions of

meaning where relevant words are aligned along an axis (e.g., man and woman along a gender axis).

Word embeddings in social science are used for several aims. First, they are used to compare the relative

SAGE

2020 SAGE Publications, Ltd. All Rights Reserved.

SAGE Research Methods Foundations

Page 21 of 27 Machine Learning

meaning of words to other words across corpuses or across time. For example, researchers could ask how

the usage of the word “man” differs between Victorian novels and modern news media. Second, performing

dimensionality reduction on the vector space can help identify interesting latent meaning dimensions (e.g.,

gender) encoded in the corpus (Arseniev-Koehler & Foster, 2019). Third, modifications like Doc2Vec of the

original word embedding approaches project documents into the same vector space as the vocabulary words.

This is not quite equivalent to discovering topics but documents with similar language should be closer in

vector space, and users can then perform subsequent unsupervised clustering of documents in this space

to find groups of similar documents. This approach works better than topic modeling for identifying similar

abbreviated documents (e.g. tweets). The two most popular word embedding algorithms are the original

method Word2Vec (Mikolov et al., 2013) and GloVe, an approach that combines the local context approach

with global co-occurrence information when producing vectors. However, word embedding methods are very

active areas of research, and newer models like BERT use more sophisticated neural networks to capture

more nuanced relationships between words than the widely used Word2Vec and GloVe models.

Machine Learning Methods and Causal

Inference

Two of the most important developments in social science methodology over the last several decades

include advances in causal inference methods and advances in machine learning methods. Yet they have

largely developed along different axes of interest. Susan Athey (2018) states, “Despite the fascinating

examples of ‘off-the-shelf’ of slightly modified prediction methods, in general ML prediction models are solving

fundamentally different problems from much empirical work in social science, which instead focuses on causal

inference” (p. 10). A model with high explanatory power that is optimized for prediction might be a relatively

poor model, and even inferior to a model with low explanatory power, for causal inference. Social scientists

interested in causal questions prefer unbiased estimates of causal effects to accurate prediction of outcomes

(Mullainathan & Spiess, 2017). Off-the-shelf machine learning algorithms are not designed to attend to key

assumptions in a causal model to identify causal effects such as the key identifying assumption that treatment

assignment is unconfounded. Judea Pearl (2018), in the introductory chapter “Mind Over Data,” cautions,

While awareness of the need to a causal model has grown leaps and bounds among the sciences,

many researchers in artificial intelligence would like to skip the hard step of constructing or acquiring

a causal model and rely solely on data for cognitive tasks. The hope … is that the data themselves

will guide us to the right answers whenever causal questions come up. I am an outspoken skeptic

of this trend because I know how profoundly dumb data are about cause and effects. (p. 16)

Researchers, however, are making progress in merging machine learning and causal inference methods.

Indeed, the intersection of these two paradigms represents an extremely promising direction for empirical

social scientific knowledge. Scholars of causal inference are increasingly adopting approaches from machine

SAGE

2020 SAGE Publications, Ltd. All Rights Reserved.

SAGE Research Methods Foundations

Page 22 of 27 Machine Learning

learning, while attending to identification strategies from statistics and econometrics, to enhance research

in fields such as economics, political science, and sociology. Methods for conditioning on covariates offer a

promising intersection between machine learning methods and the goals of estimating causal effects. In order

to estimate causal effects without exogenous shocks, we assume selection on observables, or [Yi(x) | Wi = wi |

Xi = xi] (Imbens & Rubin, 2015). Some research has suggested using LASSO for selecting covariates (Belloni,

Chernozhukov, & Hansen, 2014), and other work has adopted machine learning algorithms for conditioning

on covariates.

Propensity score weighting and matching on propensity scores has a long history in the causal inference

literature. Propensity scores are summary measures of selection into treatment based on observed covariates

[P(x) = P(Wi = wi | Xi = xi)]. Estimating propensity scores is a prediction problem and, thus, at least on the

surface, lends itself well to machine learning approaches. Many recent papers consider various strategies

for estimating propensity scores based on machine learning algorithms (Lee, Lessler, & Stuart, 2010).

Classification trees and random forests offers promising approaches. Iterative procedures that mimic machine

learning algorithms, but are not black-box, are also possible (see Imbens & Rubin, 2015, for a description).

The fundamental problem of causal inference is that researchers do not observe potential outcomes in

both the treated and control states, and thus there is no ground truth in causal models like there is in

predictive models. Adopting machine learning methods for estimating causal effects thus requires changing

the objective function. Machine learning methods can be adopted for experimental and observational data

settings, instrumental variable models, difference–indifference designs, and regression discontinuity.

Estimation of average treatment effects has benefited from a residual balancing approach (Athey & Imbens,

2016) as well as a double machine learning approach (Chernozhukov et al., 2017). Estimation of treatment

effect heterogeneity represents an especially promising use of machine learning methods for causal

inference. Athey and Guido Imbens (2017) offer a detailed review of a variety of questions that can be

addressed related to treatment effect heterogeneity. One approach developed by Athey and Imbens (2016)

is to use DTs (causal trees) to partition the feature space according to effect heterogeneity, and estimate

effects within each leaf (see also Brand et al., 2019, for an empirical application using observational data).

This approach yields easily interpretable patterns of variation in treatment effects. Stefan Wager and Athey

(2018) also offer a causal forest based on random forests, which is an average of many causal trees where

trees differ due to subsampling. Each of these approaches offers new methods by which to uncover effect

heterogeneity.

Conclusion

Machine learning methods are not without important limitations for social science research. First, many

machine learning algorithms are black-box, rendering substantive interpretation in social science applications

challenging. Relatedly, machine learning methods are not focused on solving estimation problems, while

empirical social science researchers are often concerned with how effects change when one or more selected

SAGE

2020 SAGE Publications, Ltd. All Rights Reserved.

SAGE Research Methods Foundations

Page 23 of 27 Machine Learning

covariates are added to or eliminated from a model.

If the data from which a machine learns are limited, so too will be what researchers learn from that data. This

is always true in model estimation, but machine learning models render researchers increasingly dependent

on the belief that social scientists should be able to effectively predict social behavior. Peter M. Blau and Otis

Dudley Duncan (1967) once noted,

Sociologists are often disappointed in the size of the residual, assuming that this is a measure of

their success in ‘explaining’ the phenomenon under study. They seldom reflect on what it would

mean to live in a society where nearly perfect explanation of the dependent variable … In such a

society it would indeed be true that some are destined to poverty almost from birth … By no effort

of their own could they materially alter the course of destiny, nor could any stroke of fortune, good

or ill, lead to an outcome not already in the cards. (p. 174)

Researchers should, in other words, not be dismayed that data and models, even machine learning models,

cannot perfectly predict social behavior. That said, machine learning methods hold tremendous promise and

indeed have and will produce a profound and transformative impact on empirical social science research.

Further Readings

Attewell, P., Monaghan, D., & Kwong, D. (2015). Data mining for the social sciences: An introduction.

Berkeley: University of California Press.

Bishop, C. M. (2006). Pattern recognition and machine learning. Berlin, Germany: Springer.

Domingos, P. (2015). The master algorithm: How the quest for the ultimate learning machine will remake our

world. New York, NY: Basic Books.

Foster, I., Ghani, R., Jarmin, R. S., Kreuter, F., & Lane, J. (2017). Big data and social science: A practical

guide to methods and tools. Boca Raton, FL: Taylor & Francis Group.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. Retrieved from

http://www.deeplearningbook.org

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning. Berlin, Germany:

Springer. Retrieved from http://www-stat.stanford.edu/˜tibs/ElemStatLearn/

Kelleher, J. D., Namee, B. M., & D’Arcy, A. (2015). Fundamentals of machine learning for predictive data

analytics: Algorithms, worked examples, and case studies. Cambridge, MA: MIT Press.

Murphy, K. P. (2012). Machine learning: A probabilistic perspective. Cambridge, MA: MIT Press.

SAGE

2020 SAGE Publications, Ltd. All Rights Reserved.

SAGE Research Methods Foundations

Page 24 of 27 Machine Learning

http://www.deeplearningbook.org/
http://www-stat.stanford.edu/%CB%9Ctibs/ElemStatLearn/

References

Amit, Y., & German, D. (1997). Shape quantization and recognition with randomized trees. Neural

Computation, 9, 1545–1588.

Arseniev-Koehler, A., & Foster, J, . (2019). Teaching an algorithm what it means to be fat: Machine learning

as a model for cultural learning(Unpublished manuscript).

Athey, S. (2018). The impact of machine learning on economics(Unpublished manuscript).

Athey, S., & Imbens, G. (2016). Recursive portioning for heterogeneous causal effects. Proceedings of the

National Academy of Sciences, 113, 7353–7360.

Athey, S., & Imbens, G. (2017). The state of applied econometrics: Causality and policy evaluation. Journal

of Economic Perspectives, 31, 3–32.

Belloni, A., Chernozhukov, V., & Hansen, C. (2014). High-dimensional methods and inference on structural

and treatment effects. Journal of Economic Perspectives, 28, 29–50.

Blau, P. M., & Duncan, O. D. (1967). The American occupational structure. New York, NY: Wiley.

Brand, J. E., Xu, J., Koch, B., & Geraldo, P. (2019). Uncovering sociological effect heterogeneity using

machine-learning(Unpublished manuscript).

Breiman, L. (1997). Arcing the edge (Technical Report 486). Berkeley, CA: Statistics Department, University

of California.

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

Breiman, L., Freidman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression tress.

Monterey, CA: Wadsworth & Brooks/Cole.

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., & Robins, J. (2017).

Double/debiased machine learning for treatment and structural parameters. The Econometrics Journal, 21,

C1–C68.

Chipman, H. A., George, E. I., & McCulloch, R. E. (2010). BART: Bayesian additive regression trees. Annals

of Applied Statistics, 4, 266–298.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297.

Crevier, D. (1993). AI: The tumultuous history of the search for artificial intelligence. New York, NY: Basic

Books.

SAGE

2020 SAGE Publications, Ltd. All Rights Reserved.

SAGE Research Methods Foundations

Page 25 of 27 Machine Learning

Freidman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics,

29(5), 1189–1232.

Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the bias/variance dilemma. Neural

Computation, 4, 1–58.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning. Springer. Retrieved

from http://www-stat.stanford.edu/˜tibs/ElemStatLearn/

Ho, T. K. (1995). Random decision forests. Proceedings of the 3rd International Conference on Document

Analysis and Recognition, Montreal, QC. August 14–16.

Imbens, G., & Rubin, D. (2015). Causal inference for statistics, social, and biomedical sciences. Cambridge,

England: Cambridge University Press.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2017). An introduction to statistical learning: With

applications in R. Berlin, Germany: Springer.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444.

Lee, B. K., Lessler, J., & Stuart, E. (2010). Improving propensity score weighing using machine learning.

Statistics in Medicine, 29, 337–346.

Maini, V., & Sabri, S. (2017). Machine learning for humans. Retrieved from https://www.dropbox.com/s/

e38nil1dnl7481q/machine_learning.pdf?dl=0

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector

space. In Proceedings of Workshop at ICLR. Retrieved from http://arxiv.org/pdf/1301.3781.pdf

Mitchell, T. M. (1997). Machine learning. Boston, MA: McGraw-Hill.

Mullainathan, S., & Spiess, J. (2017). Machine learning: An applied econometric approach. Journal of

Economic Perspectives, 31, 87–106.

Newman, M. E. J. (2004). Fast algorithm for detecting community structure in networks. Physical Review E,

69, 066133.

Pearl, J. (2018). The book of why: The new science of cause and effect. New York, NY: Basic Books.

Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical

Society: Series B (Methodological), 58, 267–288.

Wager, S., & Athey, S. (2018). Estimation and inference of heterogenous treatment effects using random

forests. Journal of the American Statistical Association, 113, 1228–1242.

SAGE

2020 SAGE Publications, Ltd. All Rights Reserved.

SAGE Research Methods Foundations

Page 26 of 27 Machine Learning

http://www-stat.stanford.edu/%CB%9Ctibs/ElemStatLearn/
https://www.dropbox.com/s/e38nil1dnl7481q/machine_learning.pdf?dl=0
https://www.dropbox.com/s/e38nil1dnl7481q/machine_learning.pdf?dl=0
http://arxiv.org/pdf/1301.3781.pdf

Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on

Evolutionary Computation, 1(1), 67–82.

Zhu, R., Zeng, D., & Kosorock, M. R. (2015). Reinforcement learning trees. Journal of the American

Statistical Association, 110, 1770–1784.

SAGE

2020 SAGE Publications, Ltd. All Rights Reserved.

SAGE Research Methods Foundations

Page 27 of 27 Machine Learning

	Machine Learning
	Foundation Entries

	Abstract
	Introduction
	A Brief History of Machine Learning: From Computer Science to Computational Social Science
	Supervised Learning
	Training, Cross-Validation, and Testing Data
	Loss Optimization and Evaluation Metrics
	Regression Loss and Evaluation Metrics
	Classification Loss and Evaluation Metrics

	Bias-Variance Trade-Off
	Overfitting and Regularization
	Supervised Learning Algorithms
	Generalized Linear Models

	Support Vector Machines
	Naive Bayes Classifiers
	k-Nearest Neighbor
	Decision Trees
	Decision Trees: Ensemble Methods
	Artificial Neural Networks and Deep Learning

	Unsupervised Learning
	Unsupervised Learning Algorithms
	k-Means Clustering
	Hierarchical Clustering
	Network Community Detection
	Dimensionality Reduction: Principal Components Analysis
	Dimensionality Reduction: t-SNE

	Machine Learning Methods and Text Analysis
	Supervised Labeling of Documents
	Unsupervised Topic Modeling
	Word Embedding Using Neural Networks

	Machine Learning Methods and Causal Inference
	Conclusion
	Further Readings
	References

